1- “Development of cassava starch-based films incorporated with phenolic compounds produced by an Amazonian fungus” (Falcão et al., 2024). DOI: https://doi.org/10.1016/j.ijbiomac.2023.128882.
2- “Analyzing the interactions and miscibility of silk fibroin/mucin blends” (Lopes et al., 2024). DOI: https://doi.org/10.1002/app.55343.
3- “Adsorption of human immunoglobulin G using fibroin microparticles” (Santana Júnior et al., 2024). DOI: https://doi.org/10.1007/s10450-024-00440-3.
4- “Thermal modification and oxidation of cassava starch to produce biodegradable films” (Oliveira et al., 2024). DOI: https://doi.org/10.1557/s43580-023-00492-7.
5- “Release of active agents from food packaging materials” (Pacheco et al., 2024). DOI: https://doi.org/10.1007/978-1-0716-3613-8_18.
6- “Chapter 18 – Gelatin-based nanosystems for therapeutic applications” (Barbieri et al., 2023). DOI: https://doi.org/10.1016/B978-0-323-85656-
0.00024-3.
7- “Chapter 17 – Silk-based natural biomaterials: Fundamentals and biomedical applications” (Beppu et al., 2023). DOI: https://doi.org/10.1016/B978-0-323-99853-6.00015-2.
8- High-and-low-pressure fixed bed extraction behaviors to obtain phenolic compounds from barbatimão (Stryphnodendron adstringens) bark” (de Novais et al., 2023). DOI: https://doi.org/10.1016/j.scp.2023.101314.
9- “Influence of guluronic and mannuronic groups in sodium alginate blends with silk fibroin: phase equilibrium and thermodynamic modeling” (Lopes; Moraes; Beppu, 2023). DOI: https://doi.org/10.1155/2023/4986453.
10- ‘Starch as a matrix for incorporation and release of bioactive compounds: Fundamentals and applications” (Falcão et al., 2022). DOI:
https://doi.org/10.3390/polym14122361.
11- “Silk fibroin hydrogels incorporated with the antioxidant extract of Stryphnodendron astringens Bark” (Brito et al., 2022). DOI:
https://doi.org/10.3390/polym14224806.
12- “Combination effect of pH and ionic strenght in the release of charged dyes from silk fibroin membranes” (Bertolini Neto et al., 2022). DOI:
https://doi.org/10.1557/s43579-022-00184-7.
13- “A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others” (Pacheco et al., 2021). DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.180.
14- “Assessing the influence of dyes physico-chemical properties on incorporations and release kinects in silk fibroin matrices” (Tomoda et al., 2021). DOI: https://doi.org/10.3390/polym13050798.
15- “Effect of chitosan and aloe vera extract concentrations on the phsycicochemical properties of chitosan biofilms” (Yoshida et al., 2021). DOI: https://doi.org/10.3390/polym13081187.
16- “Safety and structural integrity of N95/PFF2 respirators decontamination” (Coelho et al., 2021). DOI: https://doi.org/10.1016/j.ajic.2021.06.018.
17- “Silk fibroin membranes with self-assembled globular structures for controlled drug release” (Tomoda et al., 2020). DOI:
https://doi.org/10.1002/app.48763.
18- “Erratum to: Glucomannan asymmetric membranes for wound dressing- Erratum” (Genevro et al., 2020). DOI: https://doi.org/10.1557/jmr.2019.315.
19- “Silk fibroin/chitosan/alginate multilayer membranes as a system for controlled drug release in wound healing” (Pacheco et al., 2020). DOI:
https://doi.org/10.1016/j.ijbiomac.2020.02.140.
20- “Phase diagram and estimations of Flory-Huggins parameter of interaction of silk fibroin/sodium alginate blends” (Lopes; Moraes; Beppu, 2020). DOI:
https://doi.org/10.3389/fbioe.2020.00973.
21- “Evaluation of diclofenac sodium incorporation in alginate membranes as potential drug release system” (Pacheco et al., 2020). DOI: https://doi.org/10.1016/j.mtla.2020.100827.
22- “Assessing the influence of silkworm cocoon’s age on the physicochemical properties of silk fibroin-based materials” (Ramirez, Moraes;Beppu, 2019). DOI: https://doi.org/10.1557/jmr.2019.108.
23- “Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing” (Gomes Neto et al., 2019). DOI:
https://doi.org/10.1016/j.carbpol.2019.02.017.
24- “Freezing influence on physical properties of glucomannan hydrogels” (Genevro; Moraes; Beppu, 2019). DOI:
https://doi.org/10.1016/j.ijbiomac.2019.01.112.
25- “Glucomannan asymmetric membranes for wound dressing” (Genevro et
al., 2019). DOI: https://doi.org/10.1557/jmr.2018.463.
1- “Development of cassava starch-based films incorporated with phenolic compounds produced by an Amazonian fungus” (Falcão et al., 2024). DOI: https://doi.org/10.1016/j.ijbiomac.2023.128882.
2- “Analyzing the interactions and miscibility of silk fibroin/mucin blends” (Lopes et al., 2024). DOI: https://doi.org/10.1002/app.55343.
3- “Adsorption of human immunoglobulin G using fibroin microparticles” (Santana Júnior et al., 2024). DOI: https://doi.org/10.1007/s10450-024-00440-3.
4- “Thermal modification and oxidation of cassava starch to produce biodegradable films” (Oliveira et al., 2024). DOI: https://doi.org/10.1557/s43580-023-00492-7.
5- “Release of active agents from food packaging materials” (Pacheco et al., 2024). DOI: https://doi.org/10.1007/978-1-0716-3613-8_18.
6- “Chapter 18 – Gelatin-based nanosystems for therapeutic applications” (Barbieri et al., 2023). DOI: https://doi.org/10.1016/B978-0-323-85656-
0.00024-3.
7- “Chapter 17 – Silk-based natural biomaterials: Fundamentals and biomedical applications” (Beppu et al., 2023). DOI: https://doi.org/10.1016/B978-0-323-99853-6.00015-2.
8- High-and-low-pressure fixed bed extraction behaviors to obtain phenolic compounds from barbatimão (Stryphnodendron adstringens) bark” (de Novais et al., 2023). DOI: https://doi.org/10.1016/j.scp.2023.101314.
9- “Influence of guluronic and mannuronic groups in sodium alginate blends with silk fibroin: phase equilibrium and thermodynamic modeling” (Lopes; Moraes; Beppu, 2023). DOI: https://doi.org/10.1155/2023/4986453.
10- ‘Starch as a matrix for incorporation and release of bioactive compounds: Fundamentals and applications” (Falcão et al., 2022). DOI:
https://doi.org/10.3390/polym14122361.
11- “Silk fibroin hydrogels incorporated with the antioxidant extract of Stryphnodendron astringens Bark” (Brito et al., 2022). DOI:
https://doi.org/10.3390/polym14224806.
12- “Combination effect of pH and ionic strenght in the release of charged dyes from silk fibroin membranes” (Bertolini Neto et al., 2022). DOI:
https://doi.org/10.1557/s43579-022-00184-7.
13- “A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others” (Pacheco et al., 2021). DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.180.
14- “Assessing the influence of dyes physico-chemical properties on incorporations and release kinects in silk fibroin matrices” (Tomoda et al., 2021). DOI: https://doi.org/10.3390/polym13050798.
15- “Effect of chitosan and aloe vera extract concentrations on the phsycicochemical properties of chitosan biofilms” (Yoshida et al., 2021). DOI: https://doi.org/10.3390/polym13081187.
16- “Safety and structural integrity of N95/PFF2 respirators decontamination” (Coelho et al., 2021). DOI: https://doi.org/10.1016/j.ajic.2021.06.018.
17- “Silk fibroin membranes with self-assembled globular structures for controlled drug release” (Tomoda et al., 2020). DOI:
https://doi.org/10.1002/app.48763.
18- “Erratum to: Glucomannan asymmetric membranes for wound dressing- Erratum” (Genevro et al., 2020). DOI: https://doi.org/10.1557/jmr.2019.315.
19- “Silk fibroin/chitosan/alginate multilayer membranes as a system for controlled drug release in wound healing” (Pacheco et al., 2020). DOI:
https://doi.org/10.1016/j.ijbiomac.2020.02.140.
20- “Phase diagram and estimations of Flory-Huggins parameter of interaction of silk fibroin/sodium alginate blends” (Lopes; Moraes; Beppu, 2020). DOI:
https://doi.org/10.3389/fbioe.2020.00973.
21- “Evaluation of diclofenac sodium incorporation in alginate membranes as potential drug release system” (Pacheco et al., 2020). DOI: https://doi.org/10.1016/j.mtla.2020.100827.
22- “Assessing the influence of silkworm cocoon’s age on the physicochemical properties of silk fibroin-based materials” (Ramirez, Moraes;Beppu, 2019). DOI: https://doi.org/10.1557/jmr.2019.108.
23- “Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing” (Gomes Neto et al., 2019). DOI:
https://doi.org/10.1016/j.carbpol.2019.02.017.
24- “Freezing influence on physical properties of glucomannan hydrogels” (Genevro; Moraes; Beppu, 2019). DOI:
https://doi.org/10.1016/j.ijbiomac.2019.01.112.
25- “Glucomannan asymmetric membranes for wound dressing” (Genevro et
al., 2019). DOI: https://doi.org/10.1557/jmr.2018.463.